Python syntax for DML users (proposed draft)
Contents

1Identifier names

1Data types

2Type conversion

2Comments

2Operators

4Indexing syntax for array and matrix

5Print function

5Control Statements

6User-defined functions

6Variable Scoping

7Command-line arguments

7Key philosophical difference between DML and Python-like DML

7Built-in functions

17Linear Regression DS in DML:

17Linear Regression DS in Python-like syntax:

All the examples given below have been tested on. Also, I have double-checked the DML syntax too on latest version (SystemML 3.4):

Python version 3.4 (Latest as of 1/8/2015)
NumPy version 1.9 (Latest as of 1/8/2015)
Identifier names

· Python allows variables names starting with underscore, but SystemML engine doesn’t. So the identifier rules remains same as DML.
Data types
· At high-level, we maintain SystemML type system, but will use Python’s naming. For example: double becomes float and integer becomes int.

· There are two data types (matrix and scalar) and four value types (float, int, str, and bool).
· We don’t support complex data types.
· Like DML, strings can be either single-quoted or double-quoted in python. But unlike python, DML (and the proposed python version) does not support triple quoted string to support multiple-line strings.
Type conversion

· Instead of built-in functions as.scalar(), as.matrix(),as.double(), as.integer(), as.logical(), we will use python-like naming: scalar(..), matrix(), float(), int(), bool()
· Unlike Python, DML doesn’t support type(some variable) function.
· Since Python programmers are used to str() to convert numeric types (float/int/matrix/…) into string while printing, str() function will be translated to as.scalar(). However, this will throw a validation error if matrix is more than one dimension. Example:

>>> "Hello " + "World " + str(n)

'Hello World 10'
SystemML performs automatic type conversion between value types (example: integer to float) but not between data types. To convert one dimensional matrix to float, one can use as.scalar(..) method.
Here is a small script to demonstrate the type conversion and difference between data type and value type:

y = matrix("[1 2 3; 4 5 6 ;8 9 10]")

print(scalar(y[0,0]) + ", " + int(scalar(y[1,1])) + ", " + int(2.1) + ", " + bool(1.0))

The above script will output:

1.0, 5, 2, TRUE
Comments

Python only supports line comments using a hash (#), not block comments (i.e. /* comment */) whereas DML supports both.

In Python, you need to import numpy or scipy to use the methods. Example:
>>> import numpy as np

>>> a = np.array([1, 4, 5, 8], float)

But, a = array[1, 4, 5, 8], float) won’t work. To make that work, one has to import the NumPy into current namespace:

>>> from numpy import *

So, we will assume that our library functions are imported into default namespace.
Operators
We follow SciPy matrix notation as much as possible, with a few notable exceptions. One major difference is that A*B for two matrices denote elementwise multiplication, with possible broadcasting. Matrix multiplication is denoted as dot(A,B).
	DML
	Array notation
	Matrix notation
	Proposed syntax
	Description

	x = matrix (3, rows=2, cols=4)
	x = full((2, 4), 3)
	x = matrix(full((2, 4), 3))
	x = full(2, 4, 3)
	Constant initialization

	y = matrix("1 2 3 4 5 6", rows=2, cols=3)
	y = array([[1,2,3],[4,5,6]])
	y = matrix("[1 2 3; 4 5 6]")
	y = matrix("[1 2 3; 4 5 6]")
	String initializers

	z = matrix (y, rows=3, cols=2)
	z = y.reshape((3, 2))
	z = y.reshape((3, 2))
	z = y.reshape(3, 2)
	Reshape matrix

	
	

	t(y)
	y.transpose()
transpose(y)

y.T
	y.transpose()
transpose(y)

y.T
	y.transpose()
transpose(y)

	Transpose of matrix

	c = = matrix("3 6", rows=2, cols=1)
	c = array([[3],[6]])
	c = matrix("[3;6]")
	c = matrix("[3;6]")
	Column vector (for matrix-vector operations)

	
	

	2 ^ 3
	2 ** 3, power(2, 3)
	2 ** 3
	Scalar exponentiation

	y ^ 3
	y ** 3, power(y, 3)
	power(y, 3)
	y**3
	Matrix-scalar element-wise exponentiation

	y ^ z
	y ** z, power(y, z)
	power(y, z)
	y**z
	Matrix-matrix element-wise exponentiation

	y ^ c
	y ** c, power(y, c)
	power(y, c)
	y**3
	Matrix-vector element-wise exponentiation

	
	

	y %*% z
	dot(y, z)
	y * z, dot(y, z)
	dot(y, z)
	Matrix multiplication

	
	

	y // 2
	y // 2
	y // 2
	y // 2
	Integer division (also element-wise and matrix-vector)

	y %% 2
	y % 2
	y % 2
	y % 2
	Modulus operator (also element-wise and matrix-vector)

	
	

	3 * 2
	3 * 2
	3 * 2
	3 * 2
	Scalar multiplication

	y * 3
	y * 3
	y * 3
	y * 3
	Element-wise scalar multiplication

	y * z
	y * z, multiply(y, z)
	multiply(y, z)
	y * z
	Element-wise matrix multiplication

	y * c
	y * c, multiply(y, c)
	multiply(y, c)
	y * c
	Element-wise matrix-vector multiplication

	y / 3
	y / 3
	y / 3
	y / 3
	Division (also element-wise and matrix-vector)

	y + 3
	y + 3
	y + 3
	y + 3
	Addition (also element-wise and matrix-vector)

	y - 3
	y - 3
	y - 3
	y - 3
	Subtraction (also element-wise and matrix-vector)

	
	

	3 > 2
	3 > 2
	3 > 2
	3 > 2
	Scalar relational operations (also applicable for > == != <= >=)

	ppred(x, 2, ">"),
x > 2
	x > 2
	x > 2
	x > 2
	Matrix-matrix, matrix-vector and matrix-scalar relational operations (also applicable for > == != <= >=)

	
	

	TRUE & FALSE,

TRUE | FALSE,
! TRUE
	True & False, True and False
True | False, True or False
not(True), ! True

	True & False, True and False
True | False, True or False
not(True), ! True
	Scalar boolean operations

	
	

	a = 3 (a <- 3 deprecated)
	a = 3
	a = 3
	Assignment (associativity not of assignment not supported in DML)

	
	

Unlike Python, DML does not support augmented assignment operators (+= -= *= /= %= **= //=).
Indexing syntax for array and matrix
Basic syntax in Python: i:j:k where i is the starting index, j is the stopping index, and k is the step. In DML (and also in proposed syntax), k is implicit and is always equal to 1.

Example:

>>> x = array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])

>>> x
array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9],

 [10, 11, 12]])

	DML syntax
	Python syntax
	Proposed syntax
	Description
	

	x[1,1]
	x[0,0]
	x[0,0]
	Indexing is zero-based
	Same as Python

	x[2:3,2:3]
	x[1:3,1:3]
is

array([[5, 6],

 [8, 9]])

	x[1:3,1:3]

	In DML, stopping index is included (i.e. i + (m - 1) k <= j.). In Python, the given syntax selects the m elements (in the corresponding dimension) with index values i, i + k, ..., i + (m - 1) k where [image: image1.png]and q and r are the quotient and remainder obtained by dividing j - i by k: j - i = q k + r, so that i + (m - 1) k < j.
	Same as Python

	x[nrow(x)-1,]

	x[-2,]

is
array([7, 8, 9])

	Not supported
	Negative i and j are interpreted as n + i and n + j where n is the number of elements in the corresponding dimension.
	Not supported

	Not supported
	x[some array]
	Not supported
	Advanced indexing
	Not supported

	Not supported
	x[arbitrary boolean predicate]
	Not supported
	Boolean indexing
	Not supported (see ppred builtin function)

· Assume n is the number of elements in the dimension being sliced. Then, if i is not given it defaults to 0 for k > 0 and n - 1 for k < 0 . If j is not given it defaults to n for k > 0 and -1 for k < 0 . If k is not given it defaults to 1. Note that :: is the same as : and means select all indices along this axis.
Example:

>>> x[2,:]

array([7, 8, 9])

>>> x[2,]

array([7, 8, 9])

>>> x[2,0:3]

array([7, 8, 9])

Print function

· Unlike Python (which has % and also formatters), DML does not support formatted string. Example: print("n=%d" % n)
· Also, the only concatenation operator that DML supports is ‘+’, not comma.
Control Statements
Proposed syntax will conform to python syntax for control statements except:

· parfor
· ‘break’ and ‘continue’

· “else” clause for ‘for’ and ‘while’ statements

Note for python:
· Unlike, the round braces around the predicate is optional. However, the colon is required after it.
· Instead of “else if”, python has “elif” construct.
· The predicate in ‘for’ statement can be [lower]:[upper] or seq ([lower], [upper], [increment]). However, in python we will have ‘range’ function instead of ‘seq’.
Example1:

n = 10

if n > 5 :

 print("Greater")
else :

 print("Less")

Example2:
i = 0

total = 0

while i <= 10:

 n = n + i

 i = i + 1

print("n = " + n)

Example 3:

for i in range(10):

 print(i)

 i = 5
User-defined functions

	DML
	Python
	Proposed syntax
	Description
	

	square = function(int x) return (int y)
{

 y = x*x

}
	def square(x:int) -> int:

return x*x

Also, following declaration is valid in Python:

def square(x):

return x*x
	def square(x:int) -> (y:int):

y = x*x

	SystemML engine require formal parameters declaration
	Modified Python syntax because SystemML doesnot have return statement.

	Not supported
	square(square(2))
	Not supported
	Composed function invocation
	Not supported for user-defined function but supported for built-in function.

	Not supported
	z = 10

def square(x):

 y = x*x + z

 return y

n = square(5)
	Not supported
	Accessing global variables in functions
	Not supported

	square = externalFunction(int x) return (int y) implemented in ([userParam=value])
	??
	defExternal square(x:int) -> (y:int) implemented in ([userParam=value])
	External function
	Syntax similar to function except additional ‘implemented in’ clause

Variable Scoping

Unlike DML, Python does not restrict scope in functions. Therefore following script will work in Python:

z = 10

def square(x:int) -> int:

 y = x*x + z

 return y

print(str(square(5)))
However, the scoping of variables will remain the same, i.e. ‘global unbounded’. This implies that the variables in flow control structures are not scoped in the structures. Therefore following script will output 2 in python:

if(True):

 A = 1;

 if(True):

 A=2

print("A:" + str(A));
Command-line arguments
	DML
	Python
	Proposed syntax
	Description
	

	first = ifdef($1, 2)
	Supported with if loop
	first = ifdef($1, 2)
	Default value
	Same as DML because the commandline arguments are used for constant. Python does not allow constant.

	first = $1
	from sys import argv

first = argv[1]

	first = $1
	Positional arguments
	Same as DML

	first = $first
	Not supported directly but through a package (similar to GNU Commandline library)
	 first = $first
	Named arguments
	Same as DML

Key philosophical difference between DML and Python-like DML
· Unlike DML, methods are supported for restricted set of built-in functions.
· Attributes are not supported. So, the shape is a method.

· Unlike Python, one-dimensional arrays are not supported. Therefore, the notation of few of the built-in functions are different.
· Whenever possible, the method naming is consistent with Python.

Built-in functions
	DML
	Array notation
	Matrix notation
	Proposed Python-like DML notation
	Description
	

	append(x,y)
	concatenate((x,y), axis=1)
	concatenate(x,y)
	Append columns of two matrices
	Modified Python syntax because array is not supported

	Not supported
	concatenate((x,y), axis=0)
	Not supported
	Append rows of two matrices
	Not supported

	min(x), max(x)
	x.min(), x.max()
	x.min(), x.max()
	Minimum/maximum value in a matrix
	Same as Python

	min(2,3), max(2,3)
	min((2,3)), max((2,3)), min(2,3), max(2,3)
	min(2,3), max(2,3)
	Minimum/maximum value between two scalars
	Modified Python syntax because array is not supported

	Not supported
	min((2,3,4)), max((2,3,4))
	Not supported
	Minimum/maximum value between three or more scalars
	Not supported

	min(x,2), max(x,2)
	minimum(x,2)
	minimum(x,2), maximum(x,2)
	Element-wise minimum
	Same as Python

	nrow(x)
	x.shape[0]
	x.shape(0)
	Number of rows in matrix x. Technically, shape returns a tuple.
	Modified Python syntax because array is not supported

	ncol(x)
	x.shape[1]
	x.shape(1)
	Number of columns in matrix x
	Modified Python syntax because array is not supported

	length(x)
	len(x)
	len(x)
	Number of cells in the matrix
	Same as Python

	prod(x)
	prod(x)
	prod(x)
	Product of all the cells of the matrix
	Same as Python

	rand(rows=10, cols=20, min=0, max=1, pdf="uniform", sparsity=0.2)
	random.uniform(0, 1, (10,20))
	matrix(random.uniform(0, 1, (10,20)))
	random.uniform(10, 20, 0.2, 0, 1)
	Random matrix with uniform distribution. Python does not have parameter to support sparsity.
	Modified Python syntax to support sparsity

	rand(rows=10, cols=20, pdf="normal", sparsity=0.2)
	random.normal(0, 1, (10,20))
	matrix(random.normal(0, 1, (10,20)))
	random.normal(10, 20, 0.2)
	Random matrix with standard normal distribution. Python does not have parameter to support sparsity. DML doesnot support non-standard normal directly
	Modified Python syntax to support sparsity. Additionally, the only acceptable value for mean & variance is 0, 1. This can be later extended by simple translation operation.

	x = matrix (3, rows=4, cols=4)
	x = full((4, 4), 3)
	x = matrix(full((4, 4), 3))
	x = full(4, 4, 3)
	Constant initialization
	Modified Python syntax because array is not supported

	y = matrix("1 2 3 4 5 6", rows=2, cols=3)
	y = array([[1,2,3],[4,5,6]])
	y = matrix("[1 2 3; 4 5 6]")
	y = matrix("[1 2 3; 4 5 6]")
	String initializer
	Same as Python

	z = matrix (y, rows=3, cols=2)
	z = y.reshape((3, 2))
	z = y.reshape(3, 2)
	Reshaping the matrix
	Modified Python syntax because array is not supported

	removeEmpty(target=x, margin="rows")
	x33[~all(x33 == 0, axis=0)]
	removeEmpty(x, axis=0)
	Removes all empty rows or columns from the input matrix target X according to the specified margin.
	Modified to support axis

	y = replace(target=y, pattern=3, replacement=2)
	y[y==3] = 2
	y = replace(y, 3, 2)
	Creates a copy of input matrix X, where all values that are equal to the scalar pattern s1 are replaced with the scalar replacement s2.
	Same as DML

	seq (10, 200, 10)
	range (10, 200, 10)
	range (10, 200, 10)
	Creates a single column vector with values starting from <from>, to <to>, in increments of <increment>
	Same as Python

	sum(x)
	sum(x), x.sum()
	sum(x), x.sum()
	Sum of all cells in matrix
	Same as Python (also see row-wise and column-wise sum)

	rowIndexMax(x)
	x.argmax(axis=1)
argmax(x, axis=1)
	x.argmax(axis=1)

argmax(x, axis=1)
	Row-wise computation -- for each row, find the max value, and return its column index.
	Same as Python

	rowIndexMin(x)
	x.argmin(axis=1)

argmin(x, axis=1)
	x.argmin(axis=1)

argmin(x, axis=1)
	Row-wise computation -- for each row, find the minimum value, and return its column index.
	Same as Python

	ppred(x,y,"<")
ppred(x,2,"<")
	x < y or x < 2
	x < y or x < 2
	"parallel predicate". The relational operator specified in the third argument is cell-wise applied to input matrices. If the second argument is a scalar, then it is used against all cells in the first argument.
	Same as Python

	as.scalar(x), as.matrix(2)
	Not supported,
matrix(2)
	scalar(x),
matrix(2)
	Data type conversion
	Partly similar to Python

	as.double(1), as.integer(2.1), as.logical(1)
	· float(1),

· int(2.1),

· bool(1)

	· float(1),

· int(2.1),

bool(1)
	Value type conversion
	Same as Python

	mean(x), avg(x)
	mean(x), avg(x), x.mean(), x.avg()
	mean(x), avg(x), x.mean(), x.avg()
	Return the mean value of all cells in matrix
	Same as Python

	moment(x,2) returns the variance. Note, the matrix x is nX1.
	from scipy.stats import *

moment(x,2)
	moment(x,2)
	Returns the kth central moment of values in a column matrix V, where k = 2, 3, or 4. It can be used to compute statistical measures like Variance, Kurtosis, and Skewness. This function also takes an optional weights parameter W.
	Same as Python

	colSums(x), colMeans(x), colMaxs(x), colMins(x)
	x.sum(axis=0), x.mean(axis=0), x.max(axis=0), x.min(axis=0)
	x.sum(axis=0), x.mean(axis=0), x.max(axis=0),

x.min(axis=0)
	Column-wise computations -- for each column, compute the sum/mean/max/min of cell values
	Same as Python. Note: axis=0 maps to column-wise computation and axis=1 maps to row-wise computation

	rowSums(x), rowMeans(x), rowMaxs(x), rowMins(x)
	x.sum(axis=1), x.mean(axis=1), x.max(axis=1), x.min(axis=1)
	x.sum(axis=1), x.mean(axis=1), x.max(axis=1), x.min(axis=1)
	Row-wise computations -- for each row, compute the sum/mean/max/min of cell value
	Same as Python

	cov(X,Y)
cov(X,Y,W)
	sum(multiply(a-mean(a), b-mean(b)))/2 or cov(a,b)[1,0]
	Same as DML
	Returns the covariance between two 1-dimensional column matrices X and Y. The function takes an optional weights parameter W. All column matrices X, Y, and W (when specified) must have the exact same dimension.
	Same as DML

	F = table(A, B)
F = table(A, B, C)
	Not supported directly as part of Scipy/Numpy package as SystemML’s version is heavily overloaded. Example use-case of table in our dml scripts: computing permutation matrix, converting I,j,v to dense format. Also, recently additional parameters were added to handling sparsity/padding.

Ex in univariate stats script, table(F, 1, maxDomain, 1)
	Same as DML
	Returns the contingency table of two vectors A and B. The resulting table F consists of max(A) rows and max(B) columns.
More precisely, F[i,j] = |{ k | A[k] = i and B[k] = j, 1 ≤ k ≤ n }|, where A and B are two n-dimensional vectors.
In an alternative form, it takes an optional third parameter C which is a vector that has same dimensions as A and B.
In this context, F[i,j] = ∑kC[k], where A[k] = i and B[k] = j (1 ≤ k ≤ n).
	Same as DML

	p = cumultativeProbability(target=0.4, dist="normal", mean=0, sd=1);
p = cumultativeProbability(target=0.7, dist="exp", mean=0.5);
p = cumultativeProbability(target=0.3, dist="chisq", df=100);
p = cumultativeProbability(target=2, dist="f", df1=100, df2=200);
p = cumultativeProbability(target=q, dist="t", df=100);
	from scipy.stats import *

norm.cdf(0.4, 0, 1)

expon.cdf(0.7, 0.5)

chi.cdf(0.3, 100)

f.cdf(2, 100, 200)

t.cdf(1, 100)
	norm.cdf(0.4, 0, 1)

expon.cdf(0.7, 0.5)

chi.cdf(0.3, 100)

f.cdf(2, 100, 200)

t.cdf(1, 100)
	Returns the cumulative probability P[X <= q] where is X is random variable whose distribution is specified by dist. dist is: "normal" (Normal/Gaussian), "exp" (Exponential), "chisq" (Chi-square), "f" (F), and "t" (T).
	Same as Python

	A = aggregate(target=X, groups=G, fn="..." [,weights = W])
Where target= X <(n x 1) matrix>, groups = G <(n x 1) matrix>, fn="..." [,weights= W<(n x 1) matrix>]). The parameter fn takes one of the following functions: "count", "sum", "mean", "variance", "centralmoment". Output is column matrix whose number of rows is equal to the number of groups (or distinct values) present in G.
	Not supported directly as part of Scipy/Numpy package as SystemML’s version is heavily overloaded.
	Same as DML
	Splits/groups the values in target X into subsets according to the values present in G, and computes the summary statistic for each group using fn. The result is a column matrix where each row corresponds to the computed statistic for a distinct group in G. The function also takes an optional weights matrix W.
	Same as DML

	interQuartileMean(X)
interQuartileMean(X, W)
	>>> p2 = percentile(a, [75])

>>> x = a[a > percentile(a, [25])]

>>> mean(x[x <= p2])
	Same as DML
	Returns the mean of all x in X such that x>quantile(X, 0.25) and x<=quantile(X, 0.75). X, W are column matrices (vectors) of the same size. W contains the weights for data in X.
	Same as DML

	quantile(X, p)
quantile(X, W, p)
	percentile(x,p)
	percentile(x,p)

percentile(x, w, p)
	The p-quantile for a random variable X is the value x such that Pr[X<x] <= p and Pr[X<= x] >= p
let n=nrow(X), i=ceiling(p*n), quantile() will return X[i]. p is a scalar (0<p<1) that specifies the quantile to be computed. Optionally, a weight vector may be provided for X. Python’s function doesnot support weight vector.
	Similar to Python

	median(x),

median(x, w)
	median(x)
	median(x) failed with out of bounds error
	median(x), median(x, w)
	Computes the median in a given column matrix of values
	Same as Python

	cumsum(x)
	y.cumsum(axis=0),

cumsum(y, axis=0)
	y.cumsum(axis=0),

cumsum(y, axis=0)
	Column prefix-sum (For row-prefix sum, use cumsum(t(X))
	Same as Python

	exp(x), log(x), abs(x), sqrt(x), floor(x), ceil(x)
	Same as DML
	Same as DML
	Apply mathematical function on input (cell wise if input is matrix)
	Same as Python

	round(x)
	
	
	
	

	sin(x), cos(x), tan(x)
	Same as DML
	Same as Python
	Apply trigonometric function on input (cell wise if input is matrix)
	Same as Python

	asin(x), acos(x), atan(x)
	arcsin(x)
arccos(x)

arctan(x)
	
	
	

	diag(x)
	diag(x)
	diag(x)
	Create diagonal matrix from (n x 1) or (1 x n) matrix, or take diagonal from square matrix
	Same as Python

	[w, V] = eigen(x)
	[w, V] = linalg.eig(x)
	[w, V] = eig(x)
	Computes Eigen decomposition of input matrix A. The Eigen decomposition consists of two matrices V and w such that A = V %*% diag(w) %*% t(V). The columns of V are the eigenvectors of the original matrix A. And, the eigen values are given by w.

A is a square symmetric matrix with dimensions (m x m). This function returns two matrices w and V, where w is (m x 1) and V is of size (m x m).
	Same as Python (without package name linalg)

	[P, L, U] = lu(A)
	import scipy

import scipy.linalg

 [P, L, U] = scipy.linalg.lu(A)
	[P, L, U] = lu(A)
	Computes Pivoted LU decomposition of input matrix A. The LU decomposition consists of three matrices P, L, and U such that P %*% A = L %*% U, where P is a permutation matrix that is used to rearrange the rows in A before the decomposition can be computed. L is a lower-triangular matrix whereas U is an upper-triangular matrix.
	Same as Python (without package name linalg)

	[H, R] = qr(A)
	[Q, R] = linalg.qr(A)
	[H, R] = qr(A)
Note, we will still be returning matrix of householder reflector vectors H instead of Q.
	Computes QR decomposition of input matrix A using Householder reflectors. For efficiency purposes, this function returns the matrix of Householder reflector vectors H instead of Q (which is a large m x m potentially dense matrix).
	Same as Python (without package name linalg). Also instead of Q, we will return H.

	solve(A,b)
	linalg.solve(a, b)
	solve(a, b)
	Computes the least squares solution for system of linear equations A %*% x = b i.e., it finds x such that ||A%*%x – b|| is minimized. The solution vector x is computed using a QR decomposition of A.
A is a matrix of size (m x n) and b is a 1D matrix of size m x 1. This function returns a 1D matrix x of size n x 1.
	Same as Python (without package name linalg)

	t(x)
	x.T

x.transpose()
	x.transpose()
	Transpose a matrix
	Same as Python (but won’t support attribute x.T)

	trace(x)
	x.trace()

trace(x)
	x.trace()

trace(x)
	Return the sum of the cells of the main diagonal square matrix
	Same as Python

	V = read (dir+file, rows=10, cols=8, format="text");
	V = fromfile(dir+file, dtype=dt)

V = load(dir+file)

	V = load(arguments same as DML);
	Read matrix from file:

· (i,j,v)-format,

· MatrixMarket format,

· Delimited or CSV format.

	Similar naming as Python

	write(V, "out/file", format=”..”)
	V.tofile(dir+file)

save(dir+file, V)
	save(arguments same as DML)
	persist scalar and matrix data to files in HDFS
	Similar naming as Python

	print(scalar)
	print(scalar or matrix)
	print(scalar)
	Prints the value of a scalar variable x. This built-in takes an optional string parameter.
	Similar naming as Python (but can only print scalar)

	stop(“Message”)
	print(“Message”)

sys.exit(error code)
	stop(“Message”)
	Halts the execution of DML program by printing the message that is passed in as the argument.

Note that the use of stop() is not allowed inside a parfor loop.
	Same as DML

	source(<DML-filename>) [as <alias>]
	import package-name as <alias>
	source(<DML-filename>) [as <alias>]
	Importing a module (collection of UDF in DML). The difference is that python (like java) finds the appropriate path (like classpath).
	Same as DML because SystemML donot have package-filepath resolution

	setwd(<file-path>)
	Not supported
	setwd(<file-path>)
	Set working directory. This is little tricky as this function will be called before import (which is usually the first statement in python)
	Same as DML

There are few subtle differences not captured above:

· To append strings, both DML and Python use ‘+’ operator. In addition, DML also has append() function. However, the semantics of Python append(“Hello”, “World”) is different as it returns an array: ['Hello', 'World']

Linear Regression DS in DML:

fmtB = ifdef ($fmt, "text");
X = read (fileX);

y = read (fileY);

n = nrow (X);

m = ncol (X);

ones_n = matrix (1, rows = n, cols = 1);

zero_cell = matrix (0, rows = 1, cols = 1);

Introduce the intercept, shift and rescale the columns of X if needed

m_ext = m;

if (intercept_status == 1 | intercept_status == 2) # add the intercept column

{

 X = append (X, ones_n);

 m_ext = ncol (X);

}

scale_lambda = matrix (1, rows = m_ext, cols = 1);

if (intercept_status == 1 | intercept_status == 2)

{

 scale_lambda [m_ext, 1] = 0;

}

scale_X = matrix (1, rows = m_ext, cols = 1);

shift_X = matrix (0, rows = m_ext, cols = 1);

lambda = scale_lambda * regularization;

A = t(X) %*% X;

b = t(X) %*% y;

A = A + diag (lambda);

print ("Calling the Direct Solver...");

beta_unscaled = solve (A, b);

beta = beta_unscaled;

write (beta, fileB, format=fmtB);

Linear Regression DS in Python-like syntax:

TODO
10 | Page

